Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles.

نویسندگان

  • Yuejun Zhao
  • Sung Kwon Cho
چکیده

This paper describes various manipulations of micro air bubbles using electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating. First, in order to understand the response of bubbles to EWOD, the contact angle modulation is measured in a capped air bubble and confirmed to be in good agreement with the Lippmann-Young equation until saturation. Based on the contact angle measurement, testing devices for the bubble manipulations are designed and fabricated. Sequential activations of patterned electrodes generate continuous bubble transportations. Bubble splitting is successfully realized by activating a single electrode positioned in the middle of bubble base. However, it is found that there are criteria that make splitting possible only in certain conditions. For successful splitting, smaller channel gap, larger bubble size, wider splitting electrode and/or larger contact angle changes by EWOD are preferred. These criteria are verified by a series of experiments as well as a static analysis. Bubble merging is achieved by moving bubbles towards each other in two different channel configurations: (1) channel I, where bubbles are in contact with the bottom channel plate only, and (2) channel II, where bubbles in contact with the top as well as bottom channel plates. Furthermore, eliminating a bubble to the ambient air is accomplished. All the bubble manipulation techniques may provide a versatile integrated platform not only to manipulate micro objects by utilizing micro bubbles as micro carriers, but also to enable a discrete bubble-based gas analysis system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits

This paper reports the completion of four fundamental fluidic operations considered essential to build digital microfluidic circuits, which can be used for lab-on-a-chip or micro total analysis system ( TAS): 1) creating, 2) transporting, 3) cutting, and 4) merging liquid droplets, all by electrowetting, i.e., controlling the wetting property of the surface through electric potential. The surfa...

متن کامل

Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.

Digital microfluidics based on electrowetting-on-dielectric (EWOD) has recently emerged as one of the most promising technologies to realize integrated and highly flexible lab-on-a-chip systems. In such EWOD-based digital microfluidic devices, the aqueous droplets have traditionally been manipulated either directly in air or in an immiscible fluid such as silicone oil. However, both transportin...

متن کامل

Microfluidic actuation of insulating liquid droplets in a parallel-plate device

In droplet-based microfluidics, the simultaneous movement and manipulation of dielectric and aqueous droplets on a single platform is important. The actuation forces on both dielectric and aqueous droplets can be calculated with an electromechanical model using an equivalent RC circuit. This model predicts that dielectric droplet actuation can be made compatible with electrowetting-based water ...

متن کامل

Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting.

Two important electric forces, dielectrophoresis (DEP) and electrowetting-on-dielectric (EWOD), are demonstrated by dielectric-coated electrodes on a single chip to manipulate objects on different scales, which results in a dielectrophoretic concentrator in an EWOD-actuated droplet. By applying appropriate electric signals with different frequencies on identical electrodes, EWOD and DEP can be ...

متن کامل

Shape Oscillation and Internal Mixing in Sessile Liquid Drops Using Electrowetting-on-Dielectric (EWOD)

Internal mixing within a sessile liquid drop can be significantly enhanced by means of so-called electrowetting-on-dielectric (EWOD), using an alternating electric potential. This is done experimentally by monitoring the coalescence and mixing of dyed liquid drops that are brought together by electrowetting actuation. The process is monitored using high-speed imaging and the extent of mixing wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2007